Southeastern PA Apr 26, 2019 Severe Weather Event Analysis

Last Thursday afternoon, April 26, 2019, a line of severe thunderstorms produced potent, damaging winds, some in excess of hurricane force that caused disruptions to regional transportation networks in the DC, Baltimore, and Philadelphia areas. These storms provide an instructive example of what ingredients are required for severe thunderstorms, and how quickly everything can come together on a given day.

Synoptic Set Up (The Big Picture)

On Thursday morning, a low centered over the Great Lakes was progressing north and east. A warm front extended south and east from this low and was moving north, with a noticeable “kink” where there was colder air at higher altitudes along the Appalachians and related foothills. South of this warm front, southerly winds were helping temperatures rise well into the upper-60s and low-70s. A cold front was located a further back and was advancing across Pennsylvania, and the Virginias. This cold front would provide the focus for lift and thunderstorms later in the day, although some more isolated thunderstorms also accompanied the warm front.

Weather Prediction Center surface analysis of this storm at 11AM on April 26, 2019

Above the surface at 850 mb, evidence suggested an axis of relatively saturated air along with a low-level jet of 35-40 knots would develop, providing the moisture necessary for precipitation. Further up in the atmosphere, a negatively tilted 500 mb trough was evident upstream of the area with the Southeast PA region also appearing to be in the exit region of a 300 mb jet streak. Both of these would help enhance lift by providing divergence aloft in the atmosphere as air was removed from the column while decelerating out of the base of the 500 mb trough and 300 mb jet streak respectively.

Fig. 1: GFS forecast model initialized at 7AM Thursday, April 26, 2019 depicting an axis/tongue of moisture (narrow area of blue) along the PA/NJ border around 5PM that day.
Fig. 2: 300 mb analysis for 8PM on Thursday, April 26, 2019. Note the densely packed yellow contours close to the Southeast PA area at this time, indicating strong net divergence in the exit region of a curved jet streak at this level (blue shaded areas with wind barbs showing max winds of 80 knots slowing to 65 knots in the exit region).

Furthermore, winds throughout the atmosphere were strong, and increasing from 35 knots at 850 mb to 60 knots at 300 mb. Meanwhile winds at the surface were light, at 5 knots or so at the from the south. Winds aloft were more from the southwest. So, there was an element of both speed and directional wind shear in the atmosphere this day.

A Sunny Afternoon and Instability

From above, we see that we had several ingredients were taking shape last Thursday: a couple frontal boundaries providing focused lift, moisture at 850 mb, vorticity and net divergence at 500 mb and 300 mb enhancing lift, with strong winds at these levels enhancing wind shear. We still needed one more key component to truly set off some strong to severe thunderstorms: instability. How does instability build up in the atmosphere? The answer has to do with the daytime heating and the sun. That’s why thunderstorms often pop up later in the afternoon when daytime heating is maximized.

Fig. 3: Storm Prediction Center mesoanalysis highlighting areas favorable for severe weather on the afternoon of April 26, 2019.
Fig. 4: Storm Prediction Center analysis of 3-hour mixed layer CAPE (convective available potential energy, a measure of instability) change. Note that the pocket of a large increase in instability corresponds to the location of the pocket of clear skies below.
Fig. 6: A marked up visible satellite image at 3:16 PM on Thursday, April 26, 2019 showing the approximate position of frontal boundaries extrapolated from the Storm Prediction Center analysis in the preceding image.

Why does daytime heating at the surface lead to destabilization of the atmosphere? This has to do with buoyancy and lapse rates. Lapse rate describes the change in temperature over a given altitude. As the sun heats the surface of the earth up, it shifts the environmental temperature line to the right on a skewT sounding as the one attached below, taken at 2PM on Thursday, April 26, 2019 at Washington Dulles International Airport (KIAD). This tends to increase instability because a warmer airmass above the surface will have greater buoyancy. A large lapse rate combined with enhanced buoyancy allows for air from the surface to rise, and keep rising forming towering cumulus clouds that can eventually build into thunderclouds. As long as a parcel rising from the surface stays warmer than the environmental temperature profile (red line), it will keep rising.

A skewT of a sounding taken at Washington Dulles International Airport (KIAD) at 2PM on Thursday, April 26, 2019. Refer to this post for how to interpret this skewT.

The Storm Prediction Center was well aware that the severe weather potential was maximized for areas that saw clearing skies in advance of the approaching cold front. They also picked up on tornado potential focused on the “kinked” warm front. This is due to the fact that such an orientation of a warm front leads to a situation where surface winds are locally backed, meaning they’re turning counterclockwise over time. This was also paired with a localized pressure fall of 3 mb over the two hours leading up to 3 PM on Thursday.

Storm Prediction Center mesoanalysis of 2 hour pressure tendencies. The area of Southeastern PA, northeast MD, and northern DE had seen a pressure fall of 3 mb leading up to 3PM Thursday.

As was the case with the Lee County Tornado that claimed 23 lives in Alabama on March 3, 2019, these locally backed winds due to the warm front and pressure falls (leading to some isallobaric winds) served to enhance storm relative helicity and create an environment favorable for storm rotation and the possibility for tornadoes. The backing winds also served to increase wind shear and the potential for severe weather. Luckily, in this case, other environmental factors weren’t supportive for a large, strong tornado.

Leave a Reply

Your email address will not be published. Required fields are marked *